i²MapReduce: Incremental Iterative MapReduce

Yanfeng Zhang
Computing Center
Northeastern University, China

Shimin Chen
Institute of Computing Technology
Chinese Academy of Sciences
Iterative Computation

• Use the same computation logic (update function) to process the data many times

• The previous iteration’s output is the next iteration’s input

• Stop when the iterated result converges to a fixed point
Iterative Cloud Intelligence Apps

Collaborative filtering recommendation

PageRank

Shortest path

Earthquake/hurricane prediction

Non negative matrix factorization

Data clustering
Iterative Computation

\[v^k = F(v^{k-1}, D) \]

- \(v \): state data (updated every iteration)
- \(D \): structure data (static during iterative computation)
- \(F() \): iterative update function

\[R^{(k)} = dW R^{(k-1)} + (1 - d)E \]

\(v \): PageRank scores \(R \)

\(D \): web graph matrix \(W \)
Structure Data is Changing
Structure Data is Changing
Structure Data is Changing

- Need to update the result to timely reflect the changing dataset
- Start from scratch? – heavy weighted
- Incremental processing

Changing social graph

Changing web graph
Incremental Processing

Utilize the previous iterative computation’s result:

1. Reduce the number of iterations
 - Structure data is slightly changed <-> the result is slightly changed
 - Start from the previously converged state rather than from a random start point
 \[F(v, D) \]
 \[F(v, D + \Delta D) \]

2. Reduce the workload of each iteration

\[O(|D + \Delta D|) \rightarrow O(|\Delta D|) \]

Restart computation \hspace{1cm} Incremental processing
Related Works & Our Focus

• Incoop [SOCC 2011] (MPI-SWS)
• Naiad [CIDR 2013] (Microsoft)

• Our Focus: Incremental Iterative MapReduce
 – MapReduce is the most widely used big data processing tool
 – Compatible with existing MapReduce apps
Map-Reduce Bipartite Graph

Iterative processing
Throw a Pebble into Still Water
Map-Reduce Bipartite Graph

Iterative processing

Incremental processing
Map-Reduce Bipartite Graph

Iterative processing

Incremental processing
Map-Reduce Bipartite Graph

Iterative processing

Incremental processing
i²MapReduce: Incremental Processing

1. Start from the previously converged state data
 - Reduce the number of iterations

2. Only execute the changed mappers/reducers and utilize the converged MR-Edge/RM-Edge state
 - Reduce the workload of each iteration

3. Filter the converged reducers
 - Avoid changes propagation
i²MapReduce: Implementation

- Hadoop extension
i²MapReduce vs. MapReduce compute

- 20-node cluster
- App: PageRank
- Synthetic power-law graph
 - Degree: log-normal dist.
 - Avg. degree 5.18
- Fixed change size
 - Randomly change 10K edges
- Varying input size
 - From 10M nodes to 50 nodes

The time of incremental processing does not change much as input size grows
Conclusions & Future Work

• Conclusions
 – Incremental processing with MRBGraph
 – i^2MapReduce: a MapReduce based framework for incremental iterative computations in the cloud

• Future work
 – Indexing mechanism for querying MRBGraph file
 – Cost-aware execution plan
Thank You!