Zhe Chen, Zhen Hu, and Robert C. Qiu
Center for Manufacturing Research
Department of Electrical and Computer Engineering
Tennessee Technological University
Cookeville, Tennessee, USA
zchen42@tntech.edu
Outline

• Introduction
• Combining Hidden Markov Model with quickest detection
• Frequency sweeping based spectrum detection and recognition
• Experimental results
• Conclusion
Introduction

• Major contribution of this paper
 – Introducing the combination of Hidden Markov Model (HMM) and quickest detection to cognitive radio
• The proposed approach
 – An approach based on HMM and quickest detection for spectrum detection, by which the radio frequency spectrum is swept continuously and spectrum detection results are output as quickly as possible.
 – Outputs
 • A detection result
 • A recognition result with the category of the detected spectrum segment
 • The starting point and ending point of the detected spectrum segment in frequency domain
Outline

• Introduction
• Combining Hidden Markov Model with quickest detection
• Frequency sweeping based spectrum detection and recognition
• Experimental results
• Conclusion
HMM

• Defined by $\lambda = \{\pi, A, B\}$
 – π: initial state probability vector
 – A: state transition matrix
 – B: observation matrix
 – M: number of possible observation values
 – N: number of states

• Forward-Backward algorithm (part)
 – $\alpha_t(i)$: forward variable
 – $p_f(o|\lambda)$: likelihood function

\[
\begin{align*}
(\pi)_{i,1} &= \Pr(s_i \text{ at } t = 1) \\
(A)_{i,j} &= \Pr(s_j \text{ at } t+1 | s_i \text{ at } t) \\
&\quad i, j = 1, 2, \ldots, N \\
(B)_{i,j} &= \Pr(v_j \text{ at } t | s_i \text{ at } t) \\
&\quad i = 1, 2, \ldots, N \\
&\quad j = 1, 2, \ldots, M
\end{align*}
\]

1) Initialization.
\[
\alpha_1(i) = \pi_i b_i (o_1) \\
&\quad i = 1, 2, \ldots, N
\]

2) Iteration from $2 \leq t \leq T$ and $1 \leq j \leq N$.
\[
\alpha_t(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij} \right] b_j (o_t)
\]

3) Termination.
\[
p_f(o|\lambda) = \sum_{i=1}^{N} \alpha_T(i)
\]
Combining HMM with quickest detection (1)

• Now the question is that if the observation sequence o to be recognized is embedded in a longer observation sequence $x = [x_1, x_2, \ldots, x_K]$, (1) how can we find the occurrence of a predefined pattern as quickly as possible? (2) And how can we determine the category of the pattern?

• Suppose the hypothesis testing problem
 – n_k : additive white Gaussian noise
 – k_0 : starting position of o in x

\[
H_0 : \begin{cases}
 x_k = n_k & 1 \leq k \leq K \\
 x_k = n_k & 1 \leq k < k_0 \\
 x_k = o_{k-k_0+1} & k_0 \leq k < k_0 + T \\
 x_k = n_k & k_0 + T \leq k \leq K
\end{cases}
\]
Combining HMM with quickest detection (2)

• Quickest detection is introduced to answer the first question, while HMM is exploited to answer the second question.

• This problem can be solved by using the following procedure.
 1) Initialization of variables. Set threshold S_{th}. Let $k = 0$ and $n = 1$.
 2) Initialize the Forward-Backward algorithm for HMM. And let $S_0 = 0$.
 3) Iteration. $k = k + 1$,

$$S_k = \max \{0, S_{k-1} + g(k; n)\}$$

where

$$g(k; n) = \ln \left(\frac{Pr_{H_1}(x_k | x_{k-1}, \ldots, x_n)}{Pr_{H_0}(x_k | x_{k-1}, \ldots, x_n)} \right)$$

If S_k is forced to be zero by the max operation, then $n = k + 1$ and goto step 2).
Combining HMM with quickest detection (3)

4) Termination. If $S_k > S_{th}$, then the procedure is terminated and the occurrence of the pattern is announced. Otherwise, goto step 3).

where

$$\Pr (x_k | x_{k-1}, \ldots, x_1) = \frac{\Pr (x_k, x_{k-1}, \ldots, x_1)}{\Pr (x_{k-1}, \ldots, x_1)} = \frac{\sum_{i=1}^{N} \alpha_k (i)}{\sum_{i=1}^{N} \alpha_{k-1} (i)}$$

- In order to avoid numerical underflow as k becomes larger, a scaling operation is applied to forward variables.

$$\hat{\alpha}_1 (i) = \alpha_1 (i) \quad i = 1, 2, \ldots, N$$

and for $2 \leq t \leq T$ and $1 \leq j \leq N$,

$$\hat{\alpha}_t (j) = \frac{\sum_{i=1}^{N} \hat{\alpha}_{t-1} (i) a_{ij} b_j (o_t)}{\sum_{i=1}^{N} \hat{\alpha}_{t-1} (i)}$$
Outline

• Introduction
• Combining Hidden Markov Model with quickest detection
• Frequency sweeping based spectrum detection and recognition
• Experimental results
• Conclusion
Frequency sweeping based spectrum detection and recognition

Received signals → Frequency Sweeping → Frequency samples → Quantification → Observations for HMM → HMM Training & Forward Variables Calculation → Forward variables → Quickest Detection & Recognition → Detection & recognition results

HMM Training & Forward Variables Calculation

HMM parameters (spectrum 1) → Forward Variables Calculation (spectrum 1) → S_x Calculation (1) → Arg Max → Index of kind of used spectrum segment

HMM parameters (spectrum 2) → Forward Variables Calculation (spectrum 2) → ... → S_x Calculation (Q) → Rising Detection → Starting point and ending point of used spectrum segment

HMM parameters (blank spectrum) → Forward Variables Calculation (blank spectrum) → S_x Calculation (Q) → Comparison with Threshold → Reference indicator for occupancy of spectrum segment

Threshold in Page’s Test
Summary of the process of spectrum detection and recognition in the proposed approach

1) Initialization. $k = 0$, $S_{i,0} = 0$, for $i = 1, 2, ..., Q$, where Q is the number of kinds of known spectra, and $S_{i,k}$ represents the k^{th} sample of S for the i^{th} kind of known spectrum. Initialize forward variables calculation submodules.

2) Iteration. $k = k + 1$. Calculate $S_{i,k}$, for $i = 1, 2, ..., Q$.
 If $S_{i,k}$ is forced to be set to zero by the max operation in 12, then goto step 1).

3) If $S_{i,k}$ is great than the threshold S_{th}, for any $i = 1, 2, ..., Q$, then the comparison submodule outputs a reference indicator for occupancy of spectrum segment and sends an enabling-signal to the rising detection submodule.

4) If the S_{k} curve that later goes the highest begins to rise, the position of the starting point of rising is recorded by the rising detection submodule. If all of the S_{k} curves begin to drop, the position of the ending point of rising is recorded.

5) If the rising detection submodule receives an enabling-signal and all of the S_{k} curves begin to drop, then the positions of recorded starting point and ending point are output, and an enabling-signal is sent to the Arg Max submodule.

6) If the Arg Max submodule receives an enabling-signal, then it outputs the index of the S_{k} curve that achieves the maximum value at the ending point, and goto step 1).

7) Goto step 2).
Outline

• Introduction
• Combining Hidden Markov Model with quickest detection
• Frequency sweeping based spectrum detection and recognition
• Experimental results
• Conclusion
The experiment

- Spectrum Analyzer (SA) has been used to sweep the spectrum and output the measured power spectrum densities (PSDs) of spectrum segments.
- Three categories of primary user’s spectrum are chosen for testing the proposed approach: CDMA, GSM, Wi-Fi.
- A blank spectrum is also measured for calculating S_k.
- The samples of these PSDs are quantified respectively with 64 levels.
- The HMMs are trained in advance with 5 states using the quantified PSDs.
- The whole quantified PSDs are regarded as observation sequences for HMM recognition.
Measured PSDs

CDMA

GSM

Wi-Fi

Blank
Experimental results – Wi-Fi (1)

Occupied spectrum detected!
Experimental results – Wi-Fi (2)

Wi-Fi spectrum recognized!
Experimental results – Wi-Fi (3)

Detected occupied frequency band matches to PSD!

Detected starting point and ending point
Experimental results - others

With input of CDMA

With input of GSM
Outline

• Introduction
• Combining Hidden Markov Model with quickest detection
• Frequency sweeping based spectrum detection and recognition
• Experimental results
• Conclusion
Conclusion

- An approach for quickest spectrum detection and recognition for cognitive radio has been proposed.
- The spectra of CDMA, GSM, Wi-Fi and blank spectrum have been measured and used for performance evaluation of the proposed approach.
- Experimental results have demonstrated that the proposed approach is effective.
Acknowledgement

• National Science Foundation (NSF) grants
 – ECCS-0901420
 – ECCS-0821658
 – ECCS-0622125

• Office of Naval Research (ONR)
 – N00014-07-1-0529
Reference

Thank you!