东大主页校园信息化与网络服务门户
教师个人主页 personal homepage
段沛博 副教授
人气:
个人信息
硕士生导师
教师拼音名称:duanpeibo
电子邮箱:
入职时间:2020-09-30
所在单位:软件学院
学历:博士研究生毕业
性别:男
职称:副教授
在职信息:在职
毕业院校:东北大学、悉尼科技大学
学科:
计算机应用技术
智能科学与技术
最后更新时间:--
开通时间:--
Decomposition-based sub-problem optimal solution updating direction-guided evolutionary many-objective algorithm
发布时间:2022-04-08点击次数:
第一作者: Zhao Haitong
合写作者: 段沛博,张长胜
发表刊物: Information Sciences
卷号: 448–449
摘要: The many-objective optimization problem (MaOP) is a common problem in the fields of engineering and scientific computing. It requires the optimization of multiple conflicting objectives. Due to the complexity of the MaOP, its optimization requires considerable amounts of time and computation resources to execute. Moreover, demand for a general optimization method for different types of MaOPs is becoming increasingly urgent. In this paper, the reference-vector-guided evolutionary algorithm (RVEA) is modified to accelerate the optimization speed and to improve its adaptability. To achieve more rapid convergence, a sub-problem optimal solution updating direction-guided variation strategy is developed to replace the original variation strategy of the RVEA. A comparative experiment on the typical test suites verifies that the proposed method offers preferable performance. Our experiment shows that the performance of the OD-RVEA declines when optimizing MaOPs with irregular Pareto fronts (PFs). To address this issue, an adaptive reference vector adjustment strategy is designed as a means of enhancing the optimization capabilities of MaOPs with irregular PFs by adjusting the distribution of reference vectors. Our comparative experiment on test cases that involve irregular PFs shows that the algorithm that applies this strategy outperforms the algorithm that applies fixed reference vectors.
页面范围: 91-111
是否译文:
联系方式
通讯/办公地址:
移动电话:
邮箱:
手机扫描二维码 即可访问本教师主页
访问量: