东大主页校园信息化与网络服务门户
教师个人主页 personal homepage
段沛博 副教授
人气:
个人信息
硕士生导师
教师拼音名称:duanpeibo
电子邮箱:
入职时间:2020-09-30
所在单位:软件学院
学历:博士研究生毕业
性别:男
职称:副教授
在职信息:在职
毕业院校:东北大学、悉尼科技大学
学科:
计算机应用技术
智能科学与技术
最后更新时间:--
开通时间:--
Estimation of link travel time distribution with limited traffic detectors
发布时间:2022-04-08点击次数:
第一作者: 段沛博
合写作者: Jun Kang,Guoqiang Mao
发表刊物: IEEE Transactions on Intelligent Transportation Systems
期号: 9
卷号: 21
DOI码: 10.1109/TITS.2019.2932053
摘要: Motivated by the network tomography, in this paper, we present a novel methodology to estimate link travel time distributions (TTDs) using end-to-end (E2E) measurements detected by the limited traffic detectors at or near the road intersections. As it is not necessary to monitor the traffic in each link, the proposed estimator can be readily implemented in real life. The technical contributions of this paper are as follows: First, we employ the kernel density estimator (KDE) to model link travel times instead of parametric models, e.g., Gaussian distribution. It is able to capture the dynamic of link travel times that vary with the change of road conditions. The model parameters are estimated with the proposed C-shortest path algorithm, K-means-based algorithm, as well as expectation maximization (EM) algorithm. Second, to reduce the complexity of parameter estimation, we further propose a Q-opt and an X-means -based algorithm. Finally, we validate our proposed method using a dataset consisting of 3.0e +07 GPS trajectories collected by the taxicabs in Xi'an, China. With the metrics of Kullback Leibler and Kolmogorov-Smirnov test, the experimental results show that the link TTDs obtained from our proposed model are in excellent agreement with the empirical distributions, provided that ~70% of the intersections are equipped with traffic detectors.
关键字: Estimation;Detectors;Roads;Tomography;Cameras;Bluetooth;Global Positioning System
页面范围: 3730-3743
是否译文:
联系方式
通讯/办公地址:
移动电话:
邮箱:
手机扫描二维码 即可访问本教师主页
访问量: