• 其他栏目

    王义松

    • 副教授 硕士生导师
    • 教师拼音名称:WangYisong
    • 出生日期:1989-03-31
    • 电子邮箱:
    • 入职时间:2021-04-26
    • 学历:博士研究生毕业
    • 办公地点:知行楼610
    • 性别:男
    • 学位:博士
    • 毕业院校:东北大学
    • 学科:热能工程

    访问量:

    开通时间:..

    最后更新时间:..

    扫描访问手机版

    Wang, Y., Jia, H., Chen, P., Fang, X., & Du, T. (2020). Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture. Journal of Materials Research and Technology, 9(3), 4368-4378.

    点击次数:

    摘要:The porous material adsorbent X zeolite was prepared by using agricultural waste rice hull ash (RHA) and modified by ion-exchange into the rare earth metal zeolite of La and Ce. A series of characterization results, including X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, N2 adsorption–desorption and pore size analysis, illustrated the effects of ion exchange modification on crystal, pore structure and morphology. The CO2 adsorption experiment was operated, and the adsorption amount of NaX and LaLiX was 6.14 and 4.36 mmol/g at atmospheric pressure, respectively. Three isotherm models were used to fit the pressure swing adsorption data. The Toth and DSL models were more accurate due to their ability to express heterogeneity. The isosteric heat and selectivity were obtained by the corresponding models and calculations. The results explained the mechanism of heat and gas uptake during adsorption and desorption. The CO2/N2 selectivity of LaNaX has enhanced more than three times. All modified zeolite samples maintained above 96.5% of initial adsorption after 20 adsorption–desorption cycles. The adsorption heat releases properties and long-term stability of the modified zeolite are superior. It demonstrates that such adsorbents can be used for long-term capture and separation of CO2 from the industrial exhaust gas.

    是否译文: