姚羽(教授)

+

  • 博士生导师  硕士生导师
  • 电子邮箱:
  • 职务:复杂网络系统安全保障技术教育部工程研究中心主任
  • 学历:博士研究生毕业
  • 性别:男
  • 联系方式:yaoyu@mail.neu.edu.cn
  • 学位:博士
  • 毕业院校:东北大学
  • 所属院系:计算机科学与工程学院
  • 学科:
    计算机应用技术
    计算机软件与理论
    计算机系统结构

访问量:

开通时间:..

最后更新时间:..

切换语种:English

手机版
  • 论文成果

A generalizable anomaly detection framework with dynamic concept drift suppression for non-stationary time series

发布时间:2026-02-12  点击次数:

  • 发表刊物:Knowledge-Based Systems
  • 摘要:In practical applications, the performance of industrial data stream anomaly detection methods often degrades due to concept drift. The core bottleneck lies in the fact that existing algorithms struggle to dynamically perceive the coupling relationship between data distribution changes and anomaly patterns. This paper proposes a generalized framework for time series anomaly detection based on Dynamic Drift Awareness and Diffusion Enhancement (DDADE). Through real-time distance monitoring and an adaptive model incremental learning mechanism, it achieves collaborative detection of concept drift and anomaly events. Specifically, the innovation of this work is as follows: First, a drift detection module based on the industrial-enhanced Mahalanobis distance is designed to capture the covariate shift in the feature space in real-time. Second, an anomaly detection model based on diffusion enhancement is proposed, which can perform incremental learning or dynamically adjust the threshold according to the drift detection results. Experiments show that in several representative industrial simulation datasets containing drift scenarios, this method outperforms the baseline models.
  • 关键字:Threshold adjustment, Concept drift, Incremental update, Anomaly detection
  • 论文类型:SCI JCR Q1
  • 备注:https://www.sciencedirect.com/science/article/pii/S0950705126001231
  • 学科门类:工学
  • 文献类型:JCR 一区
  • 是否译文: