










IEE
E P

ro
of

1865 inheritance tree was decomposed from top to bot-
1866 tom. The class DrawingPanel was split into two new
1867 classes, PerPanel new 1 and PerPanel new 2, with
1868 greater cohesion because the methods defined in its
1869 corresponding subclass NetPanel could only invoke
1870 or override the super-methods of PerPanel new 1, so
1871 the class PerPanel new 2 had no subclasses after
1872 refactoring. Thus, the depth of the extracted inheri-
1873 tance tree and the average number of immediate
1874 descendants of the classes were reduced. There are
1875 no pull up/down refactoring operations in our
1876 approach, so theDIT andNOC metric values should
1877 not increase. However, the Snelting/Tip algorithm
1878 will introduce new subclasses if their methods are
1879 executed together, which improves their functional
1880 cohesion. In Moore’s algorithm, to remove the dupli-
1881 cated method, we need to pull up the duplicated
1882 method to its corresponding superclass. Both of
1883 these operations made the DIT and NOC metric val-
1884 ues higher. According to empirical studies, we con-
1885 clude that the DIT and NOC metrics are good
1886 indicators of fault proneness [31], [32], [33]. A system
1887 becomes easier to understand and more maintain-
1888 able during the software life cycle as the DIT and
1889 NOC metric values decrease. Thus, the values of Un

1890 andMa obtained by our approach were higher.
1891 (2) Our approach identifies the refactoring opportuni-
1892 ties based on the principle of “high cohesion and
1893 low coupling,“ so it is not surprising that the cou-
1894 pling and cohesion metrics for MPC, RFC, CAM,
1895 LCOM, and EP improved after performing the
1896 refactoring operations. There were a limited number
1897 of duplicated methods in the system and we
1898 removed some operations to avoid introducing mul-
1899 tiple inheritances, so the quality changes caused by
1900 Moore’s algorithm were less obvious. Compared
1901 with the Snelting/Tip algorithm, far fewer

1902refactoring operations were suggested by our
1903approach because the threshold Th2 was used to con-
1904trol the restructuring efforts. However, the values of
1905the metrics obtained by the proposed approach were
1906better or similar to those obtained by the Snelting/
1907Tip algorithm. Lower cohesion leads to more dupli-
1908cate work and greater effort when reusing the sys-
1909tem design [44]. The fault-proneness of a class is
1910higher when the coupling between the software
1911components is stronger [32]. Thus, lower cohesion
1912and greater coupling can decrease the Reusability,

TABLE 11
Design Properties of the Three System-Level Refactoring Algorithms Used for Comparison

Software Approach DSC ANA (DIT ) DAM MPC CAM MOA NOP CIS NOM (WMC) RFC LCOM NOC

JHotDraw 7.0.6

Before 309 0.62 0.73 18.78 0.11 0.53 1.83 11.96 16.31 23.15 218.73 1.17
Snelting’s 428 1.42 0.50 12.38 0.19 0.60 1.07 7.54 11.80 17.01 201.32 6.98
Moore’s 317 0.73 0.69 18.83 0.13 0.57 1.49 11.10 16.02 22.42 207.55 1.30
Ours 343 0.61 0.63 17.61 0.25 0.72 1.63 9.92 14.95 18.95 142.85 1.08

JFreeChart 0.9.7

Before 551 0.60 0.63 14.02 0.13 0.34 1.34 12.20 16.72 19.66 413.50 1.45
Snelting’s 801 1.76 0.44 7.99 0.19 0.57 0.96 8.04 10.75 13.71 298.68 6.56
Moore’s 573 0.71 0.60 14.07 0.14 0.36 1.17 11.42 16.01 18.32 390.43 1.59
Ours 599 0.58 0.53 12.74 0.26 0.50 1.12 10.15 15.25 15.08 270.64 1.15

jEdit 2.7

Before 251 0.40 0.72 21.02 0.15 0.56 1.52 14.39 20.19 23.55 235.82 1.09
Snelting’s 414 1.03 0.44 10.43 0.23 1.05 0.90 9.67 9.02 12.97 157.90 6.82
Moore’s 256 0.29 0.64 19.09 0.12 0.59 1.40 13.46 17.83 20.34 219.04 1.11
Ours 278 0.27 0.65 18.35 0.35 1.12 1.30 12.36 17.98 18.7 203.62 1.05

HSQLDB 1.8.1.4

Before 301 0.85 0.75 35.62 0.19 1.16 1.25 25.31 35.32 36.23 559.66 1.12
Snelting’s 602 2.31 0.59 20.12 0.32 1.72 0.83 20.11 17.23 21.99 423.40 7.81
Moore’s 309 0.91 0.73 34.87 0.20 1.17 1.25 23.2 34.96 35.43 530.77 1.29
Ours 354 0.84 0.67 35.17 0.30 1.53 1.01 23.29 31.63 31.81 491.05 1.08

Jmol 9.0

Before 169 0.41 0.83 17.88 0.14 0.89 1.28 18.46 24.39 22.65 450.71 1.00
Snelting’s 281 1.56 0.56 11.06 0.33 2.09 0.85 13.21 12.03 13.09 328.14 6.01
Moore’s 176 0.43 0.81 17.20 0.20 0.90 1.20 17.50 23.96 21.86 437.00 1.08
Ours 187 0.34 0.81 15.75 0.30 1.71 1.02 16.39 23.08 18.35 417.18 0.93

TABLE 12
Metrics for the QMOOD and Maintainability Models
Obtained by the Three System-Level Refactoring

Algorithms Used for Comparison

Software Approach Ru Fe Un Ma EP Time (min)

JHotDraw 7.0.6

Before 1.00 1.00 �0.99 1.00 0.92 -
Snelting’s 1.27 0.86 �1.07 0.23 0.80 64.60
Moore’s 1.03 1.02 �0.95 0.84 0.90 1.89
Ours 1.29 1.07 �0.59 2.41 0.84 0.98

JFreeChart 0.9.7

Before 1.00 1.00 �0.99 1.00 0.91 -
Snelting’s 1.28 1.23 �1.37 0.41 0.83 50.89
Moore’s 1.01 0.95 �1.00 0.91 0.88 2.13
Ours 1.17 1.09 �0.70 3.15 0.84 1.12

jEdit 2.7

Before 1.00 1.00 �0.99 1.00 0.93 -
Snelting’s 1.42 1.26 �1.19 0.76 0.85 27.98
Moore’s 0.95 0.98 �0.91 2.11 0.91 2.54
Ours 1.27 1.36 �0.75 2.79 0.86 1.97

HSQLDB 1.8.1.4

Before 1.00 1.00 �0.99 1.00 0.95 -
Snelting’s 1.68 1.13 �1.31 0.42 0.84 25.35
Moore’s 0.99 1.00 �1.00 0.9 0.93 1.96
Ours 1.20 1.03 �0.78 1.54 0.82 2.55

Jmol 9.0

Before 1.00 1.00 �0.99 1.00 0.86 -
Snelting’s 1.62 1.52 �1.39 0.34 0.8 19.33
Moore’s 1.03 0.98 �0.85 1.05 0.83 2.28
Ours 1.23 1.33 �0.71 2.07 0.82 1.32

WANG ET AL.: AUTOMATIC SOFTWARE REFACTORING VIA WEIGHTED CLUSTERING IN METHOD-LEVEL NETWORKS 31



IEE
E P

ro
of

1913 Flexibility, Understandability, and Maintainability
1914 of software. Consequently, all the system-level met-
1915 rics were improved by our approach.
1916 (3) If methodmi is identified as a move method refactor-
1917 ing opportunity, then all the classes that contain the
1918 invocations of mi should add an instance variable of
1919 the target class for mi. Thus, the MOA metric value
1920 will increase due to the move method/field refactor-
1921 ings. In our approach, to ensure that the refactored
1922 inheritance tree can invoke the extracted classes, we

1923create instance variables for the extracted classes in
1924the refactored classes. The Flexibility function
1925defined in the QMOOD model demonstrates that the
1926system design is more flexible when theMOAmetric
1927value is higher.
1928(4) Extract class refactoring operations were suggested
1929by all three algorithms, and thus theDSC metric val-
1930ues increased in all cases. Therefore, the NOM met-
1931ric, which is considered an indicator of complexity,
1932clearly decreased. Obviously, the total number of

Fig. 22. Metric quotient changes after performing refactoring operations.

Fig. 23. Quality changes after performing refactoring operations.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 3, NO. X, XXXXX 2017



IEE
E P

ro
of

1933 new classes introduced by the Snelting/Tip algo-
1934 rithm was larger than that obtained by the other
1935 approaches because of its larger refactoring effects.
1936 (5) Some classes are decomposed by refactoring, so the
1937 class size becomes smaller and the number of private
1938 (protected) attributes is reduced; thus, the DAM
1939 metric values decrease. However, the changes in the
1940 DAM metrics with our approach were smaller than
1941 those using the Snelting/Tip algorithm. This is
1942 because a higher weight is assigned to cluster the
1943 attributes and the methods that access them, and
1944 thus the attributes largely avoid being accessed by
1945 methods declared in other classes, and their visibility
1946 is not changed. In this manner, side effects on the
1947 Flexibility and Understandability of the software sys-
1948 tem are minimized.
1949 (6) As the class size decreases, the average number of
1950 methods that can exhibit polymorphic behavior nat-
1951 urally becomes smaller. The decrease in the NOP
1952 metric improves the Understandability and reduces
1953 the Flexibility value. Moreover, the private methods
1954 should become visible to all the classes that depend
1955 on them if they are moved from the original class.
1956 Thus, the CIS metric values become lower, thereby
1957 decreasing the Reusability according to the function
1958 defined in the QMOOD model. The least refactoring
1959 operations are performed using Moore’s approach,
1960 which means that it has the fewest side effects on the
1961 Flexibility and Reusability of the code.
1962 (7) Obviously, Moore’s algorithm consumes the least
1963 time because it performs the fewest refactoring oper-
1964 ations. In the Snelting/Tip algorithm, the time com-
1965 plexity for generating the concept lattice is
1966 Oð2jEntj�1jObjjjEntj2Þ [51] in the worst case, where
1967 jEntj is the total number of the entities in the system
1968 and jObjj is the total number of objects declared in
1969 the clients. The Snelting/Tip algorithm also takes the
1970 longest time because the process required to analyze
1971 the relationships between objects and entities is also
1972 time-consuming.
1973 The simulation results indicated that the performance of
1974 our algorithm was highly stable with the different systems
1975 and its suggested refactoring operations were meaningful.

1976 7.3 Threats to Validity

1977 Three types of subjects completed our questionnaires, i.e.,
1978 Master students, PhD students and professionals, which con-
1979 sidered as the junior, intermediate and senior software quality
1980 evaluators, respectively. As the subjects were not the original
1981 developers of the object systems, they might not fully under-
1982 stand the source codes. To mitigate this threat, we reserved 2
1983 or 3 days for participants to perform rich analysis of refactor-
1984 ing results, and all the students have received training about
1985 the software refactoring techniques. Fortunately, the survey
1986 results provided by these three types of subjects were similar,
1987 so that they had important reference values in evaluating the
1988 usability of the proposed refactoring tool.
1989 Nevertheless, evaluation results by experts may be sub-
1990 jective to some extent. To avoid bias, we design the ques-
1991 tionnaire following the principles proposed by Bavota et al.
1992 [22] and Stone [52]:

19931) Providing the objective answer options for partici-
1994pants, including “Yes”, “No” and “Maybe”. Also,
1995they could add an optional comment explaining the
1996rationality behind each score.
19972) We did not show the goal of our experimentation dur-
1998ing the investigation to avoid suggestive behaviors.
19993) No conformity and authority effects on the evalua-
2000tion results, as the evaluators submitted answers via
2001E-mails without discussion. Thus, neither participant
2002knows the results of others.
2003Based on the above considerations, we can say that the
2004subjects not tried to please the experimenters even though
2005they provided the positive results.
2006We had to re-implement the algorithms compared in this
2007study because they are no longer active projects. It should
2008be noted that Moore’s algorithm was designed for the Self
2009language, but we applied it to Java projects by removing the
2010refactoring operations that introduce multiple inheritances.
2011These changes may have affected the refactoring results
2012obtained. To ensure a fair comparison, we removed as
2013many duplicated methods as possible but without changing
2014that the code’s behavior.

20158 CONCLUSIONS

2016In this study, we proposed a refactoring algorithm based on
2017complex network theory, which obtains the optimal function-
2018ality distribution from a system viewpoint. This approach
2019combines three types of refactoring, i.e., move method, move
2020field, and extract class, to remove the “bad smells“ caused by
2021cohesion and coupling problems associated with both inheri-
2022tance and non-inheritance hierarchies. The software system is
2023described by a class-level multi-relation directed network and
2024method-level weighted undirected networks. We complete
2025the refactoring preprocessing using the former, whereas the
2026latter is combined with a weighted clustering algorithm to
2027perform refactoring operations according to the principle of
2028“high cohesion and low coupling.“ The similarity between
2029the methods is equal to the weighted summation of the four
2030types of coupling relationships, i.e., sharing attribute, method
2031invocation, semantic relevance, and functional coupling. To
2032obtain a more general parameter configuration, we used 50
2033systems with good designs from GitHub to tune the four
2034types of coupling coefficients. We proposed a flexible mecha-
2035nism to allow developers to balance the system benefits
2036against the refactoring costs. Finally, the functions mentioned
2037above were encapsulated in an executable tool, which allows
2038users to perform refactoring operations automatically.
2039To verify the validity of the proposed approach, we per-
2040formed comparisons with similar approaches. Furthermore,
2041we considered the refactoring operations performed by the
2042original developers as the “gold standard“ and we evalu-
2043ated whether the proposed refactoring suggestions made
2044sense from a developer’s viewpoint. System-level metrics
2045for the Reusability, Flexibility, and Understandability func-
2046tions defined in the QMOOD and maintainability models
2047were also used to evaluate the refactoring effects. Automatic
2048refactoring experiments were conducted using five open
2049source software systems, i.e., JHotDraw, JFreeChart, JEdit,
2050HSQLDB, and Jmol. Lists of refactoring suggestions were
2051obtained by comparing the structure of the system before
2052and after performing the refactoring operations. In total,

WANG ET AL.: AUTOMATIC SOFTWARE REFACTORING VIA WEIGHTED CLUSTERING IN METHOD-LEVEL NETWORKS 33



IEE
E P

ro
of

2053 40 PhD and masters students as well as 60 professional soft-
2054 ware quality evaluators from five globally recognized com-
2055 panies, i.e., Baidu, Netease, Kingsoft, Yonyou, and Senyint,
2056 completed questionnaires to evaluate the effectiveness of
2057 the refactoring algorithm. The assessment results demon-
2058 strated that the proposed approach can resolve cohesion
2059 and coupling problems without changing the external
2060 behavior of the code, as well as helping to improve the
2061 understandability, flexibility, reusability, and maintainabil-
2062 ity of code.

2063 ACKNOWLEDGMENTS

2064 The authors gratefully acknowledge all the students and
2065 experts who participated to our study and all the reviewers
2066 for their positive and valuable comments and suggestions
2067 regarding our manuscript. We improved the original ver-
2068 sion of this paper according to their high-quality feedback.
2069 This research was supported by the National Natural Sci-
2070 ence Foundation of China (Grant Nos. 61374178, 61402092),
2071 The online education research fund of MOE research center
2072 for online education, China (Qtone education, Grant
2073 No. 2016ZD306) and the Ph.D. Start-up Foundation of
2074 Liaoning Province, China (Grant No. 201501141). Hai Yu is
2075 the corresponding author.

2076 REFERENCES

2077 [1] T. Mens and T. Tourw�e, “A survey of software refactoring,” IEEE
2078 Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb. 2004.
2079 [2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-
2080 ing: Improving the Design of Existing Code. Reading, MA, USA:
2081 Addison-Wesley, 1999.
2082 [3] M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a signif-
2083 icant but small effect on faults,” ACM Trans. Softw. Eng. Methodol-
2084 ogy, vol. 23, no. 4, pp. 33:1–33:39, Aug. 2014.
2085 [4] L. M. Hakik and R. E. Harti, “Measuring coupling to evaluate the
2086 quality of a remodularized software architecture result of an
2087 approach based on formal concept analysis,” Int. J. Comput. Sci.
2088 Netw. Secur., vol. 14, no. 1, pp. 11–16, Jan. 2014.
2089 [5] I. Chowdhury and M. Zulkernine, “Using complexity, coupling,
2090 and cohesion metrics as early indicators of vulnerabilities,” J. Syst.
2091 Archit., vol. 57, no. 3, pp. 294–313, Jun. 2011.
2092 [6] S. Mancoridis, B. S. Mitchell, and C. Rorres, “Using automatic clus-
2093 tering to produce high-level system organizations of source code,”
2094 inProc. 6thWorkshop ProgramComprehension, Jun. 1998, pp. 45–52.
2095 [7] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. Maycock,
2096 “Spectral and meta-heuristic algorithms for software clustering,”
2097 J. Syst. Softw., vol. 77, no. 3, pp. 213–223, Sep. 2005.
2098 [8] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto,
2099 “Recommending refactoring operations in large software sys-
2100 tems,” in Recommendation Systems in Software Engineering, Berlin,
2101 Germany: Springer, 2014, pp. 387–419.
2102 [9] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, and A. Mockus,
2103 “Quantifying the effect of code smells on maintenance effort,”
2104 IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156, Aug. 2012.
2105 [10] S. G. Ganesh, T. Sharma, and G. Suryanarayana, “Towards a prin-
2106 ciple-based classification of structural design smells,” J. Object
2107 Technol., vol. 12, no. 2, pp. 1:10–1:29, Jun. 2013.
2108 [11] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detec-
2109 tion and resolution: A new way to save effort,” IEEE Trans. Softw.
2110 Eng., vol. 38, no. 1, pp. 220–235, Jan./Feb. 2012.
2111 [12] S. Kimura, Y. Higo, and H. lgaki, “Move code refactoring with
2112 dynamic analysis,” in Proc. 28th IEEE Int. Conf. Softw. Maintenance,
2113 Sep. 2012, pp. 575–578.
2114 [13] B. D. Bois, S. Demeyer, and J. Verelst, “Refactoring-improving
2115 coupling and cohesion of existing code,” in Proc. 11th Working
2116 Conf. Reverse Eng., Nov. 2004, pp. 144–151.
2117 [14] G. Bavota, A. D. Lucia, and R. Oliveto, “Identifying extract class
2118 refactoring opportunities using structural and semantic cohesion
2119 measures,” J. Syst. Softw., vol. 84, no. 3, pp. 397–414, Mar. 2011.

2120[15] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Automating
2121extract class refactoring: An improved method and its eval-
2122uation,” Empirical Softw. Eng., vol. 19, no. 6, pp. 1617–1664,
2123May 2014.
2124[16] G. Czibula and I. G. Czibula, “Clustering based adaptive
2125refactoring,” J. WSEAS Trans. Inf. Sci. Appl., vol. 7, no. 3, pp. 391–
2126400, Mar. 2010.
2127[17] M. Bowman, L. C. Briand, and Y. Labiche, “Solving the class
2128responsibility assignment problem in object-oriented analysis
2129with multi-objective genetic algorithms,” IEEE Trans. Softw. Eng.,
2130vol. 36, no. 6, pp. 817–837, Nov./Dec. 2010.
2131[18] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, “Automated
2132scheduling for clone-based refactoring using a competent GA,”
2133Softw.: Practice Experience, vol. 41, no. 5, pp. 521–550, Apr. 2011.
2134[19] O. Seng, J. Stammel, and D. Burkhart, “Search-based determina-
2135tion of refactorings for improving the class structure of object-ori-
2136ented systems,” in Proc. 9th Annu. Conf. Genentic Evol. Comput.,
2137Jul. 2006, pp. 1909–1916.
2138[20] A. Han, D. Bae, and S. Cha, “An efficient approach to identify
2139multiple and independent move method refactoring candidates,”
2140Inf. Softw. Technol., vol. 59, pp. 53–66, Mar. 2015.
2141[21] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
2142method refactoring opportunities,” IEEE Trans. Softw. Eng.,
2143vol. 35, no. 3, pp. 347–366, May/Jun. 2009.
2144[22] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D.
2145Lucia, “Methodbook: Recommending move method refactorings
2146via relational topic models,” IEEE Trans. Softw. Eng., vol. 40, no. 7,
2147pp. 671–694, Jul. 2014.
2148[23] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorigou,
2149“Identification and application of extract class refactorings in
2150object-oriented systems,” J. Syst. Softw., vol. 85, pp. 2241–2260,
2151Oct. 2012.
2152[24] G. Bavota, A. D. Lucia, A. Marcus, R. Oliveto, and F. Palomba,
2153“Supporting extract class refactoring in Eclipse: The ARIES project,”
2154in Proc. 34th IEEE Int. Conf. Softw. Eng., Jun. 2012, pp. 1419–1422.
2155[25] M. O’Keeffe, and M. �O Cinn�eide, “Search-based refactoring for
2156software maintenance,” J. Syst. Softw., vol. 81, no. 4, pp. 502–516,
2157Apr. 2002.
2158[26] M. O’Keeffe, and M. �O Cinn�eide, “Search-based software main-
2159tenance,” in Proc. 10th Eur. Conf. Softw. Maintenance Reengineering,
2160Mar. 2006, pp. 10–19.
2161[27] M. O’Keeffe and M. �O Cinn�eide, “Getting the most from search-
2162based refactoring,” in Proc. 9th Annu. Conf. Genentic Evol. Comput.,
2163Jul. 2007, pp. 1114–1120.
2164[28] J. Bansiya and C. G. Davis, “A hierarchical model for object-ori-
2165ented design quality assessment,” IEEE Trans. Softw. Eng., vol. 28,
2166no. 1, pp. 4–17, Jan. 2002.
2167[29] I. Moore, “Automatic inheritance hierarchy restructuring and
2168method refactoring,” in Proc. 11th Annu. ACM SIGPLAN Conf.
2169Object-Oriented Program. Syst. Languages Appl., Oct. 1996, vol. 31,
2170no. 10, pp. 235–250.
2171[30] M. Strekenbach and G. Snelting, “Refactoring class hierarchies
2172with KABA,” in Proc. 18th Annu. ACM SIGPLAN Conf. Object-
2173Oriented Program. Syst. Languages Appl., Oct. 2004, vol. 39, no. 10,
2174pp. 315–330.
2175[31] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
2176oriented design metrics as quality indicators,” IEEE Trans. Softw.
2177Eng., vol. 22, no. 10, pp. 751–761, Oct. 1996.
2178[32] L. C. Briand, J. W€ust, J. W. Daly, and D. V. Porter, “Exploring the
2179relationships between design measures and software quality in
2180object-oriented systems,” J. Syst. Softw., vol. 51, no. 3, pp. 245–273,
2181Jan. 1999.
2182[33] R. Harrison, S. Counsell, and R. Nithi, “Experimental assessment
2183of the effect of inheritance on the maintainability of object-
2184oriented systems,” J. Syst. Softw., vol. 52, no. 3, pp. 173–179,
2185Jun. 2000.
2186[34] C. R. Myers, “Software systems as complex networks: Structure,
2187function, and evolvability of software collaboration graphs,” Phys.
2188Rev. E, vol. 68, no. 4, pp. 1–16, Oct. 2003.
2189[35] A. K. Sharma, A. Kalia, and H. Singh, “Metrics identification for
2190measuring object oriented software quality,” Int. J. Soft Comput.
2191Eng., vol. 2, no. 5, pp. 255–258, Nov. 2012.
2192[36] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the
2193MOOD set of object-oriented software metrics,” IEEE Trans. Softw.
2194Eng., vol. 24, no. 6, pp. 491–496, Jun. 1998.
2195[37] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of class-
2196es,” in Proc. 21th IEEE Int. Conf. Softw. Maintenance, Sep. 2005,
2197pp. 133–142.

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 3, NO. X, XXXXX 2017



IEE
E P

ro
of

2198 [38] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
2199 structure in very large networks,” Phys. Rev. E, vol. 69, no. 2,
2200 pp. 066111:1–066111:6. Dec. 2004.
2201 [39] M. E. J. Newman and M. Girvan, “Finding and evaluating com-
2202 munity structure in networks,” Phys. Rev. E, vol. 69, no. 2,
2203 pp. 026113:1–026113:15, Feb. 2004.
2204 [40] E. Th�ebault and C. Fontaine, “Stability of ecological communities
2205 and the architecture of mutualistic and trophic networks,” Science,
2206 vol. 329, no. 5993, pp. 853–856, Aug. 2010.
2207 [41] W. F. Opdyke, “Refactoring object-oriented frameworks,” PhD
2208 dissertation, Dept. Comput. Sci., Univ. of Illinois at Urbana-
2209 Champaign, Champaign, IL, USA, 1992.
2210 [42] Z. H. Wen and V. Tzerpos, “An effectiveness measure for software
2211 clustering algorithms,” in Proc. 12th IEEE Int. Workshop Program
2212 Comprehension, Jun. 2004, pp. 24–26.
2213 [43] S. K. Dubey and A. Rana, “Assessment of maintainability metrics
2214 for object-oriented software system,” ACM SIGSOFT Softw. Eng.
2215 Notes, vol. 36, no. 5, pp. 1–7, Sep. 2011.
2216 [44] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial use
2217 of metrics for object-oriented software: An exploratory analysis,”
2218 IEEE Trans. Softw. Eng., vol. 24, no. 8, pp. 629–639, Aug. 1998.
2219 [45] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
2220 ented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493,
2221 Jun. 1994.
2222 [46] W. Li and S. Henry, “Object-oriented metrics that predict main-
2223 tainability,” J. Syst. Softw., vol. 23, no. 2, pp. 111–122, Nov. 1993.
2224 [47] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identify-
2225 ing topics in source code,” Inf. Softw. Technol., vol. 49, no. 3,
2226 pp. 230–243, Mar. 2007.
2227 [48] J. M. Bieman and B. K. Kang, “Cohesion and reuse in an object-
2228 oriented system,” ACM SIGSOFT Softw. Eng. Notes, vol. 20,
2229 pp. 259–262, Aug. 1995.
2230 [49] Y. Boykov and V. Kolmogorov, “An experimental comparison of
2231 min-cut/max-flow algorithms for energy minimization in vision,”
2232 IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–
2233 1137, Sep. 2004.
2234 [50] W. H. E. Day and H. Edelsbrunner, “Efficient algorithms for
2235 agglomerative hierarchical clustering methods,” J. Classification,
2236 vol. 1, no. 1, pp. 7–24, Dec. 1984.
2237 [51] S. O. Kuznetsov and S. A. Obiedkov, “Comparing performance of
2238 algorithms for generating concept lattices,” J. Exp. Theoretical Artif.
2239 Intell., vol. 14, no. 2, pp. 189–216, Nov. 2002.
2240 [52] D. H. Stone, “Design a questionnaire,” British Med. J., vol. 307,
2241 no. 6914, pp. 1264–1266, 1993.

2242 Ying Wang is working toward the PhD degree in
2243 the Software College, Northeastern University,
2244 China. Her main research interests include soft-
2245 ware refactoring, software architecture, software
2246 testing, and complex networks.

2247 Hai Yu received the BE degree in electronic engi-
2248 neering from Jilin University, China, in 1993 and
2249 the PhD degree in computer software and theory
2250 from Northeastern University, China, in 2006. He
2251 is currently an associate professor of software
2252 engineering with Northeastern University, China.
2253 His research interests include complex networks,
2254 chaotic encryption, software testing, software
2255 refactoring, and software architecture. At present,
2256 he serves as an associate editor of the Interna-
2257 tional Journal of Bifurcation and Chaos, guest
2258 editor of the Entropy, and guest editor of the Journal of Applied Analysis
2259 and Computation. In addition, he was a lead guest editor for mathemati-
2260 cal problems in engineering during 2013. Moreover, he has served differ-
2261 ent roles at several international conferences, such as associate chair
2262 for the 7th IWCFTA in 2014, program committee chair for the 4th
2263 IWCFTA in 2010, Chair of the Best Paper Award Committee at the 9th
2264 International Conference for Young Computer Scientists in 2008, and
2265 Program committee member for the 3rd� 9th IWCFTA and the 5th Asia
2266 Pacific Workshop on Chaos Control and Synchronization.

2267Zhiliang Zhu received the MS degree in com-
2268puter applications and the PhD degree in com-
2269puter science from Northeastern University,
2270China. His main research interests include infor-
2271mation integration, complexity software systems,
2272network coding and communication security,
2273chaos-based digital communications, applica-
2274tions of complex network theories, and cryptogra-
2275phy. He has authored and co-authored more than
2276130 international journal papers and 100 confer-
2277ence papers. In addition, he has published five
2278books, including Introduction to Communication and Program Designing
2279of Visual Basic .NET. He is also the recipient of nine academic awards
2280at national, ministerial, and provincial levels. He has served in different
2281capacities at many international journals and conferences. Currently, he
2282serves as co-chair of the 1st-9th International Workshop on Chaos-
2283Fractals Theories and Applications. He is a senior member of the Chi-
2284nese Institute of Electronics and the Teaching Guiding Committee for
2285Software Engineering under the Ministry of Education. He is a fellow of
2286the China Institute of Communications and a member of the IEEE.

2287Wei Zhang received the PhD degree in computer
2288science and technology from Northeastern Uni-
2289versity, China, in 2013. He currently works as an
2290associate professor in the Software College,
2291Northeastern University. His research interests
2292include signal processing, multimedia coding,
2293software refactoring, and software architecture.

2294Yuli Zhao received the PhD degree in communi-
2295cation and information systems from Northeast-
2296ern University, China, in 2013. She currently
2297works as a lecture with Northeastern University.
2298Her research interests include applications of
2299complex-network theories to communications,
2300software refactoring, software architecture, and
2301software testing.

2302" For more information on this or any other computing topic,
2303please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: AUTOMATIC SOFTWARE REFACTORING VIA WEIGHTED CLUSTERING IN METHOD-LEVEL NETWORKS 35


