李松

个人信息Personal Information

教授

教师拼音名称:LI Song

电子邮箱:

办公地点:知行楼421A

毕业院校:Unversity of Lorraine

学科:材料学

当前位置: 李松@东北大学 >> 科学研究
  • 环境、材料、能源是人类社会赖以生存发展的三项基石,其中环境是空间和条件,材料是物质基础,能源是发展动力。对人类文明起到重大推动作用的两次工业革命都是在材料进步的基础上、由当时先进的技术与能源结构更替相结合所掀起的,大力促进了当时生产力的进步。然而,建立在化石能源基础上的能源结构在加速文明进程的同时也给生态环境带来了压力,环境污染、资源匮乏、能效低下、气候变化等一系列问题挑战着人类社会发展的可持续性。开发洁净能源、节能技术上升为各国的国家战略。我国相应地制定了“碳达峰 碳中和”的目标,引导经济高质量发展。

     面向双碳战略目标对变革性工业技术的迫切需求,我们以材料科学的视角在洁净能源利用及节能技术领域开展研究,以提高能源利用效率及电能、光能和化学能之间的转换效率为目标,以金属材料表面功能化和材料微观组织设计为手段,注重融合传统金属结构材料研究过程中形成的概念和理论,结合材料制备与改性技术在不同尺度上调控材料结构,在实验上优化材料及器件的结构性能,从理论上揭示物质结构与表面化学性质之间的关联。

    1. 李松,秦高梧. 新工业革命视域下的“环境与能源材料”课程建设,《大学教育》,2022, 05, 60-62.

    2. Y Yu, Z Qin, X Zhang, Y Chen, G Qin, S Li*. Far-From-Equilibrium Processing Opens Kinetic Paths for Engineering Novel Materials by Breaking Thermodynamic Limits. ACS Mater. Lett. 7 (2025) 319-332.2025-02-ACS Mater Lett.pdf 

    3. 李松,于艺弘,秦高梧. 热力学远平衡条件制备金属新材料,《东北大学学报》,2025, 46(8) 57-76.

    4. T Zhang,  X Dai,  Y Yu,  X Cui,  Y Li,  G Qin,  W Qi,  S Li. Hydroxylation of Cu Sites Enhances Selectivity of Electrosynthesis of Ethanol via Tandem Reduction of CO2Small 21 (2025) 2410135.

    5. Y Yu, Z Mei, Q Zhang, C Liu, Y Sun, H Zhang, G Qin. S Li. Electrified carbon cycling for neutralizing the steelmaking industryCarbon Energy 7 (2025) e712.

    6. X Cui, Y Yu, T Zhang, P Sutra, G Qin, S Li.  Pd-induced Cu site differentiation in Pd1Cu/Ag-N-C catalyst enables asymmetric CO-CHO coupling for efficient CO2‐to‐C2H4 conversion. Angewandte Chemie International Edition (2025) e21173.

    7. Y Yu, X Cui, Y Hong, G Qin, S Li. Efficient electrosynthesis of CO-rich syngas over CeO2-armored Ag nanowires towards sustainable steelmakingApplied Catalysis B 373 (2025) 125352.

    8. T Zhang, X Lu, W Qi*, G Qin, S LI*. Efficient Electroreduction of CO2 to CO on Silver Single-atom Catalysts: Activity Enhancement through Coordinated Modulation of Polyaniline.Applied Catalysis B 349 (2024) 123896.

    9. X Zhou, Y Liu, L Liu, Y Yu, J Xu, M Ruan*, S Li*, L Qian*. Unveiling and utilizing the reconstructing dynamics on nanoporous Ag-Bi for CO2 electroreduction. Applied Catalysis B 343 (2024) 123552.

    10. Z Li, M Gan, Y Wang, Y Liu, J Han, S Li, J Guo, L Qian. Superior activity and durability of Co3Mo correlated with interfacial microenvironment for hydrogen evolution. Applied Catalysis B 358  (2024) 124395.

    11. X Wei, Y Zhou, T Wang, H Dai, S Li. 3D interconnected hollow network of Ni-Zn-Cu nanosheets with multifold nanotwins for enhanced hydrazine oxidationApplied Surface Science 688 (2025) 162357.

    12. C Xu, Y Liu, H Guo, C Du, G Qin, S LI*. From FCC to BCC: Engineering Pd nuclearity in PdCu catalyst to enhance ethylene selectivity in acetylene hydrogenationInorganic Chemistry 64 (2025) 1893.

    13. Y Yu, Y Yin, Y Liu, X Li, J Wang, G Qin, S Li. Inverse ZnO/AuCu Electrocatalyst Enabling Tunable CO-Rich Syngas for Electrified Carbon Cycling in Steelmaking. ACS Applied Materials & Interfaces 17 (2025) 62091–62099.

    14. J Li, X Cui, Y Yu, L Qu, Y Liu, Y Wen, G Qin, S Li*. Electrified Reforming of Methane and Carbon Dioxide over Structured Ni/MgO-CeO2/FeCrAl Wire CatalystRenewable Energy 242 (2025) 122453.

    15. J Cai, X Tang, J Wang, T Zhang, Q Xie, K Mao, S Li, G Qin. Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysisRenewable Energy 232 (2024) 121121.

    16. Y Wang, Y Liu, P Sutra, G Qin, S Li. Freestanding High-Entropy Phosphide Electrodes for Industrial-Scale Hydrogen Evolution via Far-from-Equilibrium Electrosynthesis. Journal of Materials Chemistry A 13 (2025) 40305-40312.

    17. W Zhang, S Yi, Y Yu, H Liu, A Kucernak, J Wu*, S Li*. Fe-based dual-atom catalysts for oxygen reduction reactionJournal of Materials Chemistry A 12 (2024) 87-112.

    18. Z Wang, Z Mei, L Wang, Q Wu, C Xia, S Li*, T Wang*, C Liu*. Insight into the activity of Ni-based thermal catalysts for dry reforming of methaneJournal of Materials Chemistry A 12 (2024) 24802-24838.

    19. H Yin, L Qian, H Xiao, L Zhang, X Li, X Zhou, S Yuan, C Li, Q Lu, F Pan, L Zeng, J Guo, S Li. Shock-endurable and reversible evolution between CoOOH and intermediate governed by interfacial strain for fluctuating oxygen evolution. Chemical Engineering Journal 490 (2024) 151699.

    20. Y Gong, X Yang, Y Zhang, J Li, L Xu, S Li*, H Fu*, X An. Constructing asymmetric-electron-density Pd-Zn dual-atoms on N-doped defective mesoporous carbon for electrochemical reduction of CO2Chemical Engineering Journal 500 (2024) 156603.

    21. J Zhan, Y Cao, J Lai, J Li, H Ma, S Li, P Liu, XQ Chen, Y Sun*. Design of High-Efficiency Hydrogen Evolution Catalysts in a Chiral Crystal. ACS Catalysis 14 (2024) 1030-1036.

    22. X Wei, T Wang, H Dai, S Li. Nanotwin-Induced Strain Enhances the Catalytic Efficiency of Ni–Zn for Hydrazine OxidationACS Applied Energy Materials 7 (2024) 5202–5208.

    23. W Zhang, C Liu, A Kucernak, H Liu, J Wu, S Li. Synergizing Single-Atom and Carbon-Encapsulated Nanoparticles of Fe for Efficient Oxygen Reduction and Durable Zn–Air BatteriesACS Applied Energy Materials 7 (2024) 5398–5407.

    24. Y Liu, C Ma, J Zhang, H Zhou, G Qin, S Li. Tuning electronic structure of Pd by surface configuration of Al2O3 for hydrogenation reactions. Nanoscale 16 (2024) 335-342.

    25. L Yang, J Wang, T Liu, H He, X Li, X Zhang, J Li, S Li, B Liu. Synergistic Catalysis of Rh Single‐Atom and Clusters Supported on TiO2 Nanosheet Array for Highly Efficient Removal of CO and NOx. Small Structures 5 (2024) 2400230.

    26. SY Peng, W. Gong, YZ Tian, ZJ Gu, ZY Ni, S. Harjo, S Lu, GW Qin, S Li. Strengthening characteristics of CoCrNi alloys with different stacking fault energiesInternational Journal of Plasticity 191 (2025) 104401.

    27. SY Peng, YZ Tian, ZY Ni, S Lu, S Li. Effect of grain size on the deformation mechanism and fracture behavior of a non-equiatomic CoCrNi alloy with low stacking fault energyInternational Journal of Plasticity 182 (2024) 104129.

    28. Y. Wang, H. Yang, Z. Zhang, X. Meng, T. Cheng, G. Qin and S. Li. Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolutionJ. Mater. Sci. Technol. 166 (2023) 234–240.
      一种热力学远平衡制备多孔高熵合金电极的方法,同步完成高熵合金化、多孔化和电极制备三个步骤,解决了由催化材料制备电极导致服役性能不好的问题。

    29. C. Liu, D. Hao, J. Ye, S. Ye, F. Zhou, H. Xie, G. Qin, J. Xu, J. Liu, S. Li and C. Sun. Knowledgedriven design and labbased evaluation of Bdoped TiO2 photocatalysts for ammonia synthesisAdv. Energy Mater., 2023, 13, 2204126.
      人工智能驱动原子尺度上精确设计催化材料的一个例子。

    30. Y Liu, C Xu, B Yang, X Meng, G Qin, S LI. Enhancing selectivity for semi-hydrogenation of Ni by periodic isolation in the MM’X structure. Catalysis Science & Technology 13 (2023) 5345-5350.

    31. Y. Rao, Y. Wu, X. Dai, Y. Zhang, G. Qin, W. Qi, S. Li. A tale of two sites: neighboring atomically dispersed Pt sites cooperatively remove trace H2 in CO-rich streamSmall 18 (2022) 2204611.
      双原子催化,理解了孤立原子在相互接近时通过电子相互作用发生的协同催化现象。

    32. Y. Yu, D. Wang, Y. Hong, T. Zhang, C. Liu, J. Chen, G. Qin, S. Li. Bulk-immiscible CuAg alloy nanorods prepared by phase transition from oxides for electrochemical CO2 reductionChem. Commun. 58 (2022) 11163–11166. DOI:10.1039/D2CC04789F.
      一种热力学远平衡制备方法,打破平衡热力学对CuAg合金溶解度的限制,实现了两种催化中心原子级混合的串联催化。

    33. T. Zhang, Y. Wu, Y. Yu, Y. Li, G. Qin, S. Li. High throughput screening driven discovery of Mn5Co10Fe30Ni55Ox as electrocatalyst for water oxidation and electrospinning synthesis. Appl. Surf. Sci. 588 (2022) 152959. DOI: 10.1016/j.apsusc.2022.152959.
      采用高通量的制备与检测方法,确定了一种高熵氧化物的OER催化剂。

    34. Y. Liu, H. Chen, C. Xu, Y. Sun, S. Li, M. Jiang, G. Qin. Control the catalytic activity of nano-Au through tailoring the Fermi level of supportSmall 15 (2019) 1901789.
      金属-氧化物界面电子相互作用:金属粒子的局域电荷密度可由氧化物载体的Fermi能级调控,从而针对性地优化金属催化性质。

    35. X Cao, J Zhou, H Wang, S Li, W Wang, G Qin. Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activityJ. Mater. Chem. A 7 (2019) 10980–10987.
      界面相互作用调控Au纳米材料的热稳定性,基于微弧氧化技术制备了高热稳定性纳米Au催化剂,强烈的界面锚定效果抑制了纳米Au的熟化与长大。

    36. C Xu, Y Wu, S Li, J Zhou, J Chen, M Jiang, H Zhao, G Qin. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidationJ. Mater. Sci. Technol. 40 (2020) 39–46
      针对金属与氧化物之间的界面电子相互作用在催化过程中的动态特性,通过晶体学取向控制获得共格界面,消除电子在两相间动态转移的势垒。

    37. C Xu, Y Zhang, J Chen, S LI*, YW Zhang, G Qin, Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactionsSci. China Mater. 64 (2021) 128-136.

    38. F. Cao, X. Yang, C. Shen, X. Li, J. Wang, G. Qin, S. Li, X. Pang, G. Li. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrodeJ. Mater. Chem. A 8 (2020) 7245–7252.
      界面电子相互作用:发展了包覆FeCoNi合金的N掺杂碳材料,实现了OER和ORR的双重电催化功能。

    39. Xiaoqing Cao, Jun Zhou, Zhipeng Zhai, Song Li, Guo Yuan, Gaowu Qin. Synchronous Growth of Porous MgO and Half-Embedded Nano-Ru on a Mg Plate: A Monolithic Catalyst for Fast Hydrogen ProductionACS Sustainable Chem. Eng. 9 (2021) 3616-3623.
      关键词:金属表面功能涂层、整体式催化剂、金属-氧化物界面、on-off feature

    40. S. Li, J. Cai, Y. Liu, M. Gao, F. Cao, G. Qin. Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidationSol. Energy Mater. Sol. Cells 2018, 179, 328–333.
      晶体学取向调控氧化物的光电化学性质,利用特定取向的高电导延长光生载流子的平均自由程。

    41. 112


  • (1)    《环境与能源材料》- 辽宁省一流课程、东北大学精品课、课程思政示范课;《磁性物理》;《功能材料前沿》

    (2)    宝武低碳冶金基金,光能驱动电催化转化利用CO2的关键材料及技术,2022-2024130万元,主持。

    (3)    国家自然科学基金区域创新重点项目,金属基规整催化材料设计及电热催化耦合机制研究,2024-2027251万元,主持。

    (4)    国家自然科学基金重点项目,金属性平带亚氧化钛的吸光机制与能量转换行为,2024-2028230万元,参与。

    (5)    国家自然科学基金,铜及其合金的光激活ORR电催化活性,57万元,2018-2021,主持。

    (6)    国家自然科学基金,氧化铁光催化活性的外表面指数依赖机理,2011-201320万元,主持。

    (7)    国家863计划,纳米改性硅藻土制备环保建筑新材料的关键技术,933万元,2012-2014,主持。

    (8)     企业横向课题,气相色谱仪关键材料及器件研发,2021-2022年,122万元,主持。

    (9)    国家重点研发计划,可降解锌合金生物学评价以及内皮化新技术,2024.01-2026.12431万元,参与。

    (10)国家重点研发计划,复合金属氧化物催化材料的高通量制备与催化性能,2016-2020335万元,参与。